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Motivation for impedance rather than wake potential

(or its integral) to compute the collective force of

CSR.

Complete impedance Z(n,w) versus its “diagonal

part” Z(n) = Z(n,nwy). Required, in principle, when

the bunch profile evolves in time.

General form of CSR force and radiated power.

Causality and retardation.

Practical computation of force and power in a Vlasov

or macroparticle simulation.
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e Practical computation of force and power (cont’d):

Reduction of >°,,(---) [ dw(:--) can be done in terms of

Z(n,nwg) and 07 /0w(n,nwy), to a good approximation,

except for w near waveguide cutofls

wp:j:%pc7 p:1737'”7

where Z(n,w) has a pole in w. Pole is associated with

prominent retardation effects.
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Shielding Model

For dynamical studies it is essential to including shielding
of CSR due to the vacuum chamber. For this talk,
assume parallel-plate model, plate separation h, source on

circular orbit of fixed radius R in mid-plane. Cylindrical

coordinates (r,6,y), with y perpendicular to plates.

Our story can be adapted to other models with analytic
solutions, but maybe not to models solved numerically
(Stupakov & Kotelnikov).




Parallel Plate Model for CSR:
Geometry Outline
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Impedance vs. Wake Potential

Conventionally, the wake voltage can be represented by
either the impedance Z(n), or the wake potential W (z),
or the integral S(z) of W:

= Quwy Z e IR Z ()N, =

Q/Wﬁ—zA() :-Q/SZ—ZX(M

For our radiation impedance, even S(z) is too
concentrated at small z to be usetul in a Vlasov
simulation. We can use Z(n) successfully, with the sum

on n converging quickly by virtue of the fall-off of A,,.
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Laplace Transtorm of Current

Longitudinal current has the form
[(0,t) = QuoA(0 — wot,t) , XO,t)=0,1t<0,

which has a Fourier transform with Imw > 0 (equivalent

to Laplace transform)

1

2T . oo
I(n,w) = (27)2/0 e " do /_OO e 1(0,1)
_ Qo

/ ellwnwolty ()dt , Imw =v > 0.
0

Assume that \,, € C? |, p > 2 with
AR0)=0, k=0,1,---,p—1.

n
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Wake Voltage in Terms of Complete Impedance

Taking similar Laplace transtorm of Maxwell’s equations

and solving for the longitudinal electric field &€(n,w), we
define Z(n,w) by

—2nRE(n,w) = Z(n,w)I(n,w) = V(n,w) .
Hence the general form of the wake voltage is
Vg, t) =
Quo Y e™ /1 . dwe ™™ Z(n,w)
1 n

2o

/ ei(w—nwo)t’)\n(t/)dt/ .
0
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Radiated Power in Terms of Complete Impedance

Depends on both ReZ and ImZ.
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Causality and Analyticity

Contribution of A\, (t) for ¢t > 0 should vanish by
causality. Mathematically, this happens because Z(n,w)
is analytic in w in the upper half-plane, and obeys
|Z(n,w)| < M, Imw > 0. Integrating once by parts we
can get the bound

/OO ei(w—nwo)t’)\n(t/)dt/ < M 6—1mw(t—|—5t) .
t-+5t jw — nwy

This shows that when the w-contour is moved to a
semi-circle at infinity in the upper half-plane, the

contribution of [,2’5, vanishes for any o6t > 0.
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The Limit 0t — 0

For any ot > 0 we have

ot ,
de(n,w)/ dt' !0t )t
0

Can we put ot = 0 in this equation?” Strangely enough,
the answer is NO! The w-integral does not converge
uniformly w.r.t. 0t, so taking the limit 0t — 0 under the
integral is not justified, and in fact gives the wrong

allsSwer.
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Strategy for the Limit 0t — 0

Integrate twice by parts on t’' to get inverse powers of
w — nwy. Then the w-integral converges uniformly and we
can take the limit under the integral. Then integrate by

parts in opposite direction. The w-integral becomes

_/dwe—iwt / dt' e i(w—nwo t’)\//( )
w — nwg

— il d —iwt / dt' e i(w— nwo)t’)\/ e
Z/ e 27 (w — nwy) n(t)
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One More Integration by Parts Raises Hell!

/dwe—zwt n w / dt/ i(w— nwo)t’ (t/)

~ L /dw |
271 W — MWy

The first term is what we would get by putting 6t = 0 in
the original integral. The second term does not exist

unless defined as a symmetric limit (which is allowed):

Q-+v
lim dwZ(n,w) |

Q—o0 —Q4+v W — nCUO

12
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We can base calculations on the forms with A/ or .

Z(n,w)
(W — nwy)?

V(0,t) = —Quwyg Zeme/dwe_mQ
~ T

/ dt/ i(w—nwo t’)\//( )

e The 2nd order pole concentrates the w-integral near

nwo.

e If \'(¢) can be regarded as constant over any time
interval At (i.e., A, is locally quadratic) then the
t’-integral is proportional to sinc((w — nwg)At/2),

also concentrated near nwy.
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So let’s expand Z(n,w) about nwy

Taking two terms and applying residue theorem, we find

Viz,t) =

Quo Y e/ H (Z(n, nwo) An(t) + za—Z(n, nw@k%(t)) .

Ow

n

This does not work near waveguide cutoffs w = +ap/h,
where Z(n,w) has poles. Curiously, the residues of these
poles vanish at nwg = +7mp/h, so they do not show up in

a plot of Z(n,nwy). They do show up in the derivative.
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Evaluate the Pole Term and Expand

the Remainder in a Taylor series

Let Z be the non-pole remainder. Then the result is
Viz,t) =

Quo Z einz/ 1 [Z(n, nwo) An (1)

ZQT('R
YT

Z A / An(t + u)du((nwo — Ozpc)e_z(m"o apc)

p

+(p — —p))] . ap=mp/h.

Retardation associated with waveguide cutofls.

15
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Conclusion

e To treat an evolving bunch in the impedance
formalism, we have plausible corrections to the naive
replacement \,, — A\, (), which are not expensive to

compute. We avoid an expensive computation of the

double sum Y, (---) [dw(---).

e We have discovered an interesting retardation effect
associated with waveguide cutoffs. One should try to

understand this in physical terms.

e Numerical results coming soon!
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